Publications

Published Research by Project

  1. Rapid Freezing Prototyping with Water,” W. Zhang, M. C. Leu, Z. Ji, and Y. Yan, Materials & Design, 1999, 20(2–3): 139–145.
  2. An Experimental and Analytical Study of Ice Part Fabrication with Rapid Freeze Prototyping,” M. C. Leu, W. Zhang, and G. Sui, CIRP Annals,Volume 49, Issue 1,2000,Pages 147-150.
  3. "Experimental Study on the Ice Pattern Fabrication for the Investment Casting by Rapid Freeze Prototyping," Q. Liu, G. Sui and M. C. Leu, CIRP Annals,Volume 49, Issue 1,2000,Pages 147-150.
  4.  “A Study on Effects of Process Parameters in Rapid Freeze Prototyping,” F. D. Bryant, G. Sui, and M. C. Leu, Rapid Prototyping Journal, Vol. 9 No. 1, pp. 19-23.
  5. Study of Part Geometric Features and Support Materials in Rapid Freeze Prototyping,” M. C. Leu, Q. Liu and F. D. Bryant, CIRP Annals, Volume 52, Issue 1, 2003, Pages 185-188.
  6. "Investigation of Layer Thickness and Surface Roughness in Rapid Freeze Prototyping," G. Sui and M. C. Leu, ASME. Journal of Manufacturing Science and Engineering, August 2003; 125(3): 556–563.
  7. "Thermal Analysis of Ice Wall Built by Rapid Freeze Prototyping," G. Sui and M. C. Leu, ASME. Journal of Manufacturing Science and Engineering. November 2003; 125(4): 824–834.
  8. "Dimensional Accuracy and Surface Roughness of Rapid Freeze Prototyping Ice Patterns and Investment Casting Metal Parts," Q. Liu, M. C. Leu, V. Richards and S. Schmitt, The International Journal of Additive Manufacturing Technology 24, 485–495 (2004).
  9. Modeling and Experimental Results of Concentration with Support Material in Rapid Freeze Prototyping,” F. D. Bryant and M. C. Leu, Rapid Prototyping Journal 15 (2009): 317-324.
  10. Predictive Modeling and Experimental Verification of Temperature and Concentration in Rapid Freeze Prototyping with Support Material,” F. Bryant and M. C. Leu, ASME. Journal of Manufacturing Science and Engineering, August 2009; 131(4): 041020.
  1. Freeze-form Extrusion Fabrication of Ceramic Parts,” T. Huang, M. S. Mason, G. E. Hilmas, and M. C. Leu, Virtual and Physical Prototyping, 1:2, 93-100.
  2. Dispersion of Zirconium Diboride in an Aqueous High-Solids Paste,” T. Huang, G. E. Hilmas, W. G. Fahrenholtz, and M. C. Leu, International Journal of Applied Ceramic Technology, 4: 470-479.
  3. Aqueous-Based Extrusion of High Solids Loading Ceramic Pastes: Process Modeling and Control,” M. S. Mason, T. Huang, R. G. Landers, M. C. Leu, and G. E. Hilmas, Journal of Materials Processing Technology, Volume 209, Issue 6,2009, Pages 2946-2957.
  4. Aqueous Based Freeze-form Extrusion Fabrication of Alumina Components,” T. Huang, M. S. Mason, G. E. Hilmas, and M. C. Leu, Missouri Univ-Rolla Dept of Materials Science and Engineering; 2006.
  5. Liquid Phase Migration in Extrusion of Aqueous Alumina Paste for Freeze-Form Extrusion Fabrication,” H-J. Liu and M. C. Leu, International Journal of Modern Physics B 2009 23:06n07, 1861-1866.
  6. Research on Extrusion Velocity in Freeform Extrusion Fabrication of Aqueous Alumina Paste,” H-J. Liu and M. C. Leu, Key Engineering Materials, Trans Tech Publications, Jan 2010.
  7. Adaptive Force Control of Freeze-Form Extrusion Fabrication Processes,” X. Zhao, R. G. Landers, and M. C. Leu, ASME. Journal of Manufacturing Science and Engineering, December 2010; 132(6): 064504.
  8. Investigation of Laser Sintering for Freeform Fabrication of Zirconium Diboride Parts,” M. C. Leu, S. Pattnaik, and G. E. Hilmas, Virtual and Physical Prototyping, 7:1, 25-36.
  9. Freeze-Form Extrusion Fabrication of Functionally Graded Materials,” M. C. Leu, B. K. Deuser, L. Tang, R. G. Landers, G. E. Hilmas, and J. L. Watts, Proceedings of the 23rd Annual International Solid Freeform Fabrication Symposium -- An Additive Manufacturing Conference (2012, Austin, TX), pp. 467-479, University of Texas at Austin, Aug 2012.
  10. Hybrid Extrusion Force-Velocity Control Using Freeze-form Extrusion Fabrication for Functionally Graded Material Parts,” B. K. Deuser, L. Tang, R. G. Landers, M. C. Leu, and G. E. Hilmas, Journal of Manufacturing Science and Engineering, American Society of Mechanical Engineers (ASME), Jan 2013.
  11. Extrusion Process Modeling for Aqueous–based Ceramic Pastes, Part 1: Constitutive Model,” M. Li, L. Tang, R. G. Landers, and M. C. Leu, ASME. Journal of Manufacturing Science and Engineering. October 2013; 135(5): 051008.
  12. Extrusion Process Modeling for Aqueous–based Ceramic Pastes, Part 2: Experimental Verification,” M. Li, L. Tang, R. G. Landers, and M. C. Leu, ASME. Journal of Manufacturing Science and Engineering. October 2013; 135(5): 051009.
  13. Modeling, Analysis and Simulation of Paste Freezing in Freeze-form Extrusion Fabrication of Thin-Wall Parts,” M. Li, R. G. Landers, M. C. Leu, ASME. Journal of Manufacturing Science and Engineering. December 2014; 136(6): 061003.
  14. Development of Freeze-Form Extrusion Fabrication with Use of Sacrificial Material,” M. C. Leu and D. A. Garcia, ASME. Journal of Manufacturing Science and Engineering. December 2014; 136(6): 061014.
  15. Adaptive Rastering Algorithm for Freeform Extrusion Fabrication Processes,” A. Ghazanfari, W. Li, and M. C. Leu, Virtual and Physical Prototyping, 10:3, 163-172.
  16. Modeling and Analysis of Paste Freezing in Freeze-Form Extrusion Fabrication of Thin-Wall Parts via a Lumped Method,” M. Li, A. Ghazanfari, W. Li, R. G. Landers, and M. C. Leu, Journal of Materials Processing Technology, Volume 237, 2016, Pages 163-180.
  1. Advanced Ceramic Components with Embedded Sapphire Optical Fiber Sensors for High Temperature Applications,” A. Ghazanfari, W. Li, M. C. Leu, Y. Zhuang, and J. Huang, Materials & Design, Volume 112, 2016, Pages 197-206.
  2. Extrusion-On-Demand Methods for High Solids Loading Ceramic Paste in Freeform Extrusion Fabrication,” W. Li, A. Ghazanfari, M. C. Leu, and R. G. Landers, Virtual and Physical Prototyping, 12:3, 193-205.
  3. "A Novel Freeform Extrusion Fabrication Process for Producing Solid Ceramic Components with Uniform Layered Radiation Drying." Amir Ghazanfari, Wenbin Li, Ming C.Leu, Jeremy L.Watts, Gregory E.Hilmas. Additive Manufacturing,Volume 15,2017,Pages 102-112.
  4. "Mechanical Characterization of Parts Produced by Ceramic on‐demand Extrusion Process." Amir Ghazanfari, WenbinLi, Ming C.Leu, Jeremy L.Watts, Gregory E.Hilmas, , International Journal of Applied Ceramic Technology. 2017; 14: 486‐ 494.
  5. "Additive Manufacturing and Mechanical Characterization of High Density Fully Stabilized Zirconia." Amir Ghazanfari, Wenbin Li, Ming C.Leu, Jeremy L.Watts, Ceramics International, Volume 43, Issue 8, 2017,Pages 6082-6088
  6. “Additive Manufacturing of Zirconia Parts with Organic Sacrificial Supports,” W. Li, A. Armani, D. McMillin, M. C. Leu, G. E. Hilmas, and J. L. Watts, International Journal of Applied Ceramic Technology. 2020; 17: 1544– 1553.
  7. "Characterization of zirconia specimens fabricated by ceramic on-demand extrusion," Wenbin Li, Amir Ghazanfari, Devin McMillen, Ming C.Leu, Gregory E.Hilmas, JeremyWatts, Ceramics International,Volume 44, Issue 11, 2018, Pages 12245-12252.
  8. "Mitigating Coffee-Ring Defect Formation in Ceramic On-Demand Extrusion Parts," Austin J. Martin, Wenbin Li, Jeremy Lee Watts, Ming-Chuan Leu, Gregory R. Hilmas, T.Huang, Solid Freeform Fabrication 2018, Aug 2018.
  9. "Extrusion-on-Demand Methods for High Solids Loading Ceramic Paste in Freeform Extrusion Fabrication." Wenbin Li, Amir Ghazanfari, Ming C. Leu & Robert G. Landers, Virtual and Physical Prototyping, vol. 12, no. 3, 2017, pp. 193-205.
  10. "Fabricating Ceramic Components with Water Dissolvable Support Structures by the Ceramic on-Demand Extrusion Process.", Wenbin Li, Amir Ghazanfari, Ming C.Leu, Gregory E.Hilmas, CIRP Annals,Volume 66, Issue 1,2017,Pages 225-228.
  1. "A Foil-Based Additive Manufacturing Technology for Metal Parts" Chen, Y. Shen, H-L. Tsai, ASME Journal of Manufacturing Science and Engineering, Vol. 139(2): 024501, February 2017.
  2. “3D printing of large, complex metallic glass structures” Y. Shen, Y. Li, C. Chen, H-L. Tsai, Materials & Design, Vol. 117, March 2017, pp. 213-222.
  3. “Building metallic glass structures on crystalline metal substrates by laser-foil-printing additive manufacturing” Y. Li, Y. Shen, C. Chen, M. C. Leu, H-L. Tsai, Journal of Materials Processing Technology, Vol. 248, October 2017, pp. 249-261.
  4. “Building Zr-based metallic glass part on Ti-6Al-4V substrate by laser-foil-printing additive manufacturing” Y. Li, Y. Shen, M. C. Leu, H-L. Tsai, Acta Materialia, Vol. 144, February 2018, pp. 810-821.
  5. “Additive manufacturing of Zr-based metallic glass structures on 304 stainless steel substrates via V/Ti/Zr intermediate layers” Y. Li, Y. Shen, C-H. Hung, M. C. Leu, H-L. Tsai, Materials Science and Engineering: A, Vol. 729, June 2018, pp. 185-195.
  6. “Mechanical properties of Zr-based bulk metallic glass parts fabricated by laser-foil-printing additive manufacturing” Y. Li, Y. Shen, M. C. Leu, H-L. Tsai, Materials Science and Engineering: A, Vol. 743, January 2019, pp. 404-411.
  7. “Enhanced mechanical properties for 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing” C-H. Hung, A. Sutton, Y. Li, Y. Shen, H-L. Tsai, M. C. Leu, Journal of Manufacturing Processes, Vol. 45, September 2019, pp. 438-446.
  8. “Aluminum Parts Fabricated by Laser-Foil-Printing Additive Manufacturing: Processing, Microstructure, and Mechanical Properties” C-H. Hung, Y. Li, A. T. Sutton, W-T. Chen, X. Gong, H. Pan, H-L. Tsai, M. C. Leu, Materials, Vol. 13, No. 2, January 2020.
  9. “The effect of laser welding modes on mechanical properties and microstructure of 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing” C-H. Hung, W-T. Chen, M. H. Sehhat and M. C. Leu, Journal of Advanced Manufacturing Technology, Vol. 112, November 2020, pp. 867-877.
  1. “Bioprinting with bioactive glass loaded polylactic acid composite and human adipose stem cells” K.C. Kolan, J.A. Semon, A.T. Bindbeutel, D.E. Day, M.C. Leu, Bioprinting 18 (2020) e00075.
  2. “3D-printed Biomimetic Bioactive Glass Scaffolds for Bone Regeneration in Rat Calvarial Defects” K.C. Kolan, Y.-W. Huang, J.A. Semon, M.C. Leu, International Journal of Bioprinting 6(2) (2020).
  3. “A Brief Review on 3D Bioprinted Skin Substitutes” F. Fayyazbakhsh, M.C. Leu, Procedia Manufacturing 48 (2020) 790-796.
  4. “Bioprinting with human stem cells-laden alginate-gelatin bioink and bioactive glass for tissue engineering” K.C. Kolan, J.A. Semon, B. Bromet, D.E. Day, M.C. Leu, International Journal of Bioprinting 5(2.2) (2019).
  5. “Solvent Based 3D Printing of Biopolymer/Bioactive Glass Composite and Hydrogel for Tissue Engineering Applications” J. Baldridge, (2018).
  6. “Solvent and melt based extrusion 3D printing of polycaprolactone bioactive glass composite for tissue engineering” K.C. Kolan, W. Li, R. Althage, J.A. Semon, D.E. Day, M.C. Leu, (2018).
  7. “3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering” C. Murphy, K. Kolan, W. Li, J. Semon, D. Day, M. Leu, Int J Bioprint 3(1) (2017) 54-64
  8. “In vitro assessment of laser sintered bioactive glass scaffolds with different pore geometries” K.C. Kolan, A. Thomas, M.C. Leu, G. Hilmas, Rapid Prototyping Journal (2015).
  9. “Effect of architecture and porosity on mechanical properties of borate glass scaffolds made by selective laser sintering” K.C. Kolan, M.C. Leu, G.E. Hilmas, T. Comte, Rapid Prototyping J 65 (2013) 816-826.
  10. “Freeze extrusion fabrication of 13–93 bioactive glass scaffolds for bone repair” N.D. Doiphode, T. Huang, M.C. Leu, M.N. Rahaman, D.E. Day, Journal of Materials Science: Materials in Medicine 22(3) (2011) 515-523.