
A GPU based Parallel Hierarchical Fuzzy ART Clustering

Sejun Kim
Department of Computer Engineering, Missouri University of Science & Technology

skgcf@mst.edu

Abstract— Hierarchical clustering is an important and power-
ful but computationally extensive operation. This motivates the
exploration of highly parallel approaches such as is available in
Graphics Processing Units, as well as low-complexity algorithms
such as Adaptive Resonance Theory (ART). Although ART
has been implemented on GPU processors, this is the first
hierarchical ART GPU implementation we are aware of. Each
ART layer is distributed in the GPU multiprocessors and is
trained simultaneously. The experimental results show that for
deep trees, the GPU performance advantage is significant.

I. INTRODUCTION

GRAPHICS Processing Unit (GPU) programming, par-
ticularly using the NVIDIA CUDA(Compute Unified

Device Architecture) has been of interest in computational
intelligence, particularly for population based algorithms [6]-
[8]. But it would be of great value to use GPU programming
to apply the known advantages in hierarchical clustering
[1],[2].

Fuzzy Adaptive Resonance Theory (ART) is attractive
for hierarchical clustering because of speed, scalability and
amenity to parallel implementation. [17]. However, hierar-
chical fuzzy ART based on GPU engines has not been
previously reported. One main constraint in CUDA is the
inflexibility of memory inside the kernel meaning that
the generation of dynamic arrays are limited only in the
host(CPU) side. Typical tree structure algorithms implement
pointers for both node creation and reference [9], which is
inefficent to do in CUDA programming. The other is that
each ART units is trained as data are fed sequentially. GPU
implementation which focused in the behavior of a single
ART unit was achieved in [10],[18],[19], but hierarchical
fuzzy ART needed a different approach. The architecture is
inspired from the structure of pipelining [11]. As shown in
Fig. 1, even though ART networks are trained sequentially,
the parallalization was successfully accomplished.

This paper describes the method of adapting multi-layer
tree structure composed of FA units into CUDA platforms.
The experiment results are also presented to imply the
performance boost on various data sets and parameters com-
pared with those on conventional CPUs. Section II briefly
explains FA followed by an overview of CUDA in Section
III. Section IV mainly focuses on the proposed algorithm
and the experimental data and results appears in Section V.
Finally, conclusions and further research tasks are drawn in
Section VI.

Fig. 1. Data feeding example of CUDA based hierarchical fuzzy ART. The
first layer which is also the root node starts with each sample and once the
training is finished, the root ART unit passes it to a child node corresponding
to which category has won. Each layer loads the proper ART unit for the
training for different samples as the winning category varies.

II. FUZZY ADAPTIVE RESONANCE THEORY AND THE
HIERARCHICAL FUZZY ART NETWORK

Adaptive Resonance Theory (ART) is an unsupervised
learning method which vanquishes the “stability-plasticity
dilemma”. ART is capable of learning arbitrary data in a
both stable and self-organizing manner [4]. ART1 deals with
binary data, whereas Fuzzy ART deals with arbitrary data.
Henceforth, we will be referring to Fuzzy ART.

Before the training, the data passes through a preprocess
step, scaling them to fit in the range of [0,1]. The weight
vectors wj are initilazed to be all 1. Let x be an input sample.
In category choice, the competition in F2 is calculated,
defined as

Ti =
|x ∧ wj |
α+ |wj |

, (1)

where ∧ is the fuzzy AND operator defined by

(x ∧ y)i = min(xi, yi), (2)

and α > 0 is the choice parameter. By the winner-take-all
competition,

TJ = max{Tj |∀j}. (3)

The winning neuron J becomes activated and is fed back
to layer F1 for the vigilance test. If

ρ ≤ |x ∧ wJ |
|x|

, (4)

resonance occurs. Then in layer F2, the input x is categorized
to J and the network is trained by the following learning rule,

wJ(new) = β(x ∧ wJ(old)) + (1− β)wJ(old), (5)

where β (0 ≤ β ≤ 1) is the learning rate. If neuron J does
not meet the match criterion, it will be reset and excluded
during the presentation of the input within the vigilance test.
The hierarchical fuzzy ART network is composed of the

Fig. 2. A hierarchy of ART units. The input pattern is registered at the
bottom and is sequentially fed only to those ART units in the hierarchy of
”winning” F2 units from the parent node. (Figure adapted from [20]).

FA[12]. The hierarchy of ART units illustrated in Fig. 2 is
done in order to split the clusters more finely by increasing
the vigilance. An example of a modular multi-layer network
architecture composed of ART networks (HART, for “Hier-
archical ART”) is in [3].

III. GENERAL PURPOSE GRAPHICS PROCESSING UNIT
(GPGPU) WITH CUDA

The desire of displaying a 3D world on computers in real-
time greatly increased the computational ability of graphics
processors. Fig. 3 illustrates design difference between CPUs
and GPUs [13]. A kernel which is the set of operations
defined in GPU processors can be programmed and executed
simultaneously in different threads. A single NVIDIA Fermi
GPU theoretically is capable of containing up to 67,107,840
threads.

Fig. 3. GPUs devotes more transistors to data processing than CPUs.

But several constraints in GPGPU exist. Direct memory
access between the host(CPU) and the device(GPU) is not
possible. To handle certain data in other sides, data transfer
is required either from CPU to GPU or vice versa. Becuase
the transfer rate is relatively slow, minimizing data transition
is the critical concern. The lack of dynamic pointer and array
generation inside the kernel limits the GPU as well.

IV. PARALLEL HIERARCHICAL FUZZY ART IN CUDA

To achieve the parallalization of the Parallel Hierarchical
Fuzzy ART (PHF-ART), the layers, as shown in Fig. 1, were
distributed among the GPU threads. Each layer is not an
individual module but behaves as a controller to call up
required FA on every diverse states. Layer 1 is exclusively
assigned to the root FA node. Every time an input passes
through a layer, the working FA module in the layer emanates
the adapted category back to the layer. Then it assigns the
child FA node and broadcasts the node ID and the input ID to
the adjacent lower layer while receiving the new assignment
from the upper layer, which can be regarded as pipelining.
Algorithm 1 is the pseudocode of the kernel in the program.

Algorithm 1 Layer Behavior
if Li assignment exists then

call FA module
call input
do FA training
set Li+1:FAJ ,input

end if
if layer is root then

idData++
else

wait assignment
end if

Defining the tree structure in CUDA platform was also
a critical problem as well as the parallelization. After the
initializtion step, the first data will be registered in root FA.
Once the training is completed, the layer will attempt to
find the ID of the corresponding child FA module which
is not set yet. In generic CPU programming, generating a
child node can be easily done by allocating a new pointer
and cross referring between the parent and child node or
by vector template coding. As these methods are impossible
in the kernel, a semi-dynamic pointer method is applied.
Compared with dynamic arrays, semi-dynamic arrays have
a fixed maximum size set and an tracking integer is defined
to record the used amount.

The memory size of the graphic card used for the experi-
ment is 1.6 GB. The contents occupying the VRAM within
the program are the data sample vectors, layer states and
other very small entries such as the kernel itself, registers
and local variables in each kernel. A million samples of
4 dimensional float vector take up only 32 MB, implying
that the rest of the memory can be declared for the FA
modules. The number of maximum FA modules depends on
the dimension of the sample vector as well as the preset
number of maximum category allowed. Typically in the
experiment, 1.5 million FA modules could be pre-declared.

Even though semi dynamic array is applied, a parallel
feature known as race condition [14] hinders the tracking
of the maximum size. Assuming a certain situation when
all of the layers needs to generate a new child FA module,

Algorithm 2 Child ID finder
for i = ∀layer do

if new child needed then
idChild←tracker
tracker++

end if
end for

the threads will attempt to assign a child node in the same
place as they are running in parallel. Thus, concurrent or
sequential coding is required in order to correctly assign a
child node and to keep the tracker in control. To reduce
the non-parallelism, the throughput of the child id finder
which runs right after the FA trainer is limited to as much
as possible, which pseudocode is described in Algorithm 2.
Once the child node ID is all setup, the layer behavior kernel
reruns to finish the task. With the child ID finder, the entire
program procedure is depicted in Algorithm 3.

Algorithm 3 Parallel Hierarchical Fuzzy ART
init setting
memcpy(host→device)
for i = 1 to nDATA+ nLayer − 1 do

FA Trainer()
childIDFinder()
setNextAssignment()

end for
memcpy(device→host)

V. EXPERIMENTAL RESULTS

TABLE I
DESCRIPTION OF THE USED DATA

Data Set Attributes Number of Data Points
Arbitrary 1 2 800
Arbitrary 2 2 40000

2d-10c 2 3630
2d-40c 2 2563
10d-4c 10 1482
10d-10c 10 3788
10d-40c 10 2707
Abalone 8 4177

The experiments on both CPU and GPU were held on an
Intel Xeon E5620 Quad Core CPU with 12 GB RAM and
NVIDIA Geforce GTX 480. 2 sets of arbitrary generated
data, “abalone” data from UCI Machine Learning Repository
[15] and 5 sets of the synthetic data developed by Handl
and Knowles [16] are used for the performance testing. The
depths of the hierarchy were set in the range of 5, 10, 15,
20, 50, 100 and 200. For the simulation, only the vigilances
of each layer varied linearly in the range of [0.3, 0.9]. The
learning rate and the choice parameter were set as 0.8 and
0.1, respectively. The elapsed times on CPU platform and
GPU platform were measured differently. The initial setup
time for both platforms were excluded but the consumed

time while copying data to and from the GPU was included
on the GPU performance aspect. The features of the data
used for the simulation are summarized in Table I.

(a) Arbitrary Data 1

(b) 10d-4c

(c) Abalone

Fig. 4. The elapsed time as a function of depth of hierarchical fuzzy ART
tree. The dotted line is the result acquired from the CPU while the dashed
line is that from GPU.

Fig. 4 plots the elapsed time measure on each platform.
When the tree depth is low, the CPU running speed is faster
as the algorithm was based on layer pipelining. But as the
depth grows to meet a certain value, the performance of the
GPU implementation exceeds that of the CPU application.
The point where the GPU exceeds the CPU varies on each
data set as shown in Table II. The time comparison chart
implies that the larger the dimension of the data is, the sooner
the GPU surpasses the CPU. The maximum speed boost
was by 1170% on 2d-10c data with 200 layers. The average
performance improvement is 859.37%, 527.95%, 294.74%
and 140.46% on 200, 100, 50 and 20 layers, respectively.

TABLE II
ELAPSED TIME (ms) COMPARISON

Data Set HF-ART Depth
5 10 15 20 50 100 200

Arbitrary1(GPU) 312 495 498 521 541 581 647
Arbitrary1(CPU) 40 119 174 234 392 778 1572
Arbitrary2(GPU) 4245 4788 6164 6503 7206 8286 10500
Arbitrary2(GPU) 1895 5879 8792 11672 20227 39093 76597
2d-10c(GPU) 968 628 752 783 853 962 1198
2d-10c(CPU) 349 694 1044 1392 3548 6954 14025
2d-40c(GPU) 478 508 597 617 669 751 927
2d-40c(CPU) 246 493 738 987 2463 4964 9907
10d-4c(GPU) 1342 1441 1750 1807 1924 2097 2462
10d-4c(CPU) 458 921 1379 1850 4647 9340 18719
10d-10c(GPU) 2807 3059 3866 4010 4259 4688 5460
10d-10c(CPU) 1186 2354 3539 4735 11925 23926 43974
10d-40c(GPU) 1980 2213 2784 2891 3038 3323 3834
10d-40c(CPU) 836 1681 2526 3343 8406 16863 31027
Abalone(GPU) 2972 2867 3582 3710 3929 4185 4715
Abalone(CPU) 519 1586 2370 3153 5018 10165 20214

Fig. 5. Generated fuzzy ART module tree through the training.

VI. CONCLUSIONS AND FUTURE WORKS

Fig. 5 illustrates how finely the samples can be frage-
mented. The results also show that such deep clustering
can be accomplished faster than CPU based algorithms.
Even though HF-ART on GPU provides a notifiable speed
improvement, still a few obstacles remain. The limited size of
the graphics memory as well as its inflexibility bounds the to-
tal size of FA modules which can be generated. Furthermore
high-dimensional data strains the distributed memory limits
of the GPU, necessitating investigation of hybridizing this
approach with data reduction such as principal component
analysis in preprocessing.

To the best of our knowledge, this is the first report of
hierarchical ARt clustering in GPU processors. We expect
this contribution to have an impact in applications where the
need for hierarchical clustering is combined with high data
loads and computational demands, such as in data mining
and bioinformatics.

REFERENCES

[1] R. Xu and D.C. Wunsch II, Clustering. IEEE / Wiley Press, Hoboken,
NJ, 2008.

[2] D. Everitt, S. Landau and M. Leese, Clustering analysis, 4th edition.
Arnold, London, UK, 2001.

[3] G. Bartfai, “An ART-based modular architecture for learning hierarchi-
cal clusterings,” Neurocomputing, vol. 13, pp. 31-45, 1996.

[4] G.A. Carpenter, S. Grossberg and D.B. Rosen, “Fuzzy ART: Fast stable
learning and categorization of analog patterns by an adaptive resonance
system,” Neural Networks, vol. 4, pp. 759-771, 1991.

[5] D.E. Rumelhart, J.L. McClelland and the PDP Research Group, Parallel
Distributed Processing; Explorations in the Microstructure of Cogni-
tion, vol. 1: Foundations, ch. 5, pp. 151-193, MIT Press, Cambridge,
MA, 1986.

[6] D.M. Chitty, “A data parallel approach to genetic programming using
programmable graphics hardware,” GECCO ’07: Proceedings of the 9th
annual conference on genetic and evolutionary computation , vol. 2, pp.
1566-1573, Jul. 1991.

[7] Z. Luo, H. Liu and X. Wu, “Artificial neural network computation on
graphic process unit,” IJCNN ’05. Proceedings of the IEEE Interna-
tional Joint Conference on Neural Networks, vol. 1, pp. 622-626, Jul,
2005.

[8] J.M. Li, D.L. Wan, Z.X. Chi and X.P. Hu, “A parallel particle
swarm optimization algorithm based on fine-grained model with GPU-
accelerating,” Harbin Gongye Daxue Xuebao/Journal of Harbin Insti-
tute of Technology, vol. 38, no. 12, pp. 2162-2166, Dec. 2006.

[9] D. Knuth, The Art of Computing Programming: Fundamental Algo-
rithms, 3rd Edition, vol. 1, Addison-Wesley, 1997.

[10] M. Martnez-Zarzuela, F. Pernas, A. de Pablos, M. Rodrguez, J.
Higuera, D. Giralda and D. Ortega, “Adaptative Resonance Theory
Fuzzy Networks Parallel Computation Using CUDA,” Bio-Inspired
Systems: Computational and Ambient Intelligence, vol. 5517, pp. 149-
156,2009.

[11] A.J. Martin, S.M. Burns, T.K. Lee, D.Borkovic, and P.J. Hazewindus,
“The design of an asynchronous microprocessor,” Advanced Res. VLSI:
Proc. Decennial Caltech Conf. VLSI: Proc. Decennial Caltech Conf.
VLSI, MIT Press Cambridge, MA, Mar. 1986.

[12] D.C. Wunsch II, “An Optoelectronic Learning Machine,” Ph. D.
Dissertation, University of Washington, Jul. 1991.

[13] NVIDIA, NVIDIA CUDA C Programming Guide, ver. 3.2, NVIDIA
Corporation, Santa Clara, CA, Nov. 2010.

[14] R. Netzer and B. Miller, “What are race conditions? Some issues and
formalizations,” ACM Letters on Programming Languages and Systems,
vol. 1, no. 1, pp. 74-88, Mar. 1992.

[15] A. Frank and A. Asuncion, UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml], University of California, School of In-
formation and Computer Science, Irvine, CA, 2010.

[16] J. Handl and J. Knowles, “Improving the scalability of multiobjective
clustering,” Proceedings of the Congress on Evolutionary Computation
2005, vol. 3, pp. 2372-2379, 2005.

[17] D.C. Wunsch II, “ART properties of interest in engineering appli-
cations,” Proc. IEEE/INNS International Joint Conference on Neural
Networks, Atlanta, GA, 2009.

[18] M. Gorchetchnikov, H. Ames, M. Versace, “Simulating Biologically
Realistic Neural Models on Graphics Process Units,” ICCNS 2008,
Boston, MA, 2008.

[19] R.J. Meuth, ”GPUs surpass computers at repetitive calculations,”
Potentials, IEEE, vol. 26, no. 6, pp. 12-23, Nov.-Dec. 2007.

[20] D.C. Wunsch II, T.P. Caudell, C.D. Capps, R.J. Marks II, R.A. Falk,
“An optoelectronic implementation of the adaptive resonance neural
network,” Neural Networks, IEEE Transactions, vol. 4, no. 4, pp. 673-
684, Jul. 1993.

