EXPERIMENTAL CHARACTERIZATION OF OPTICAL NONLOCALITY IN METAL-DIELECTRIC MULTILAYER METAMATERIAL STACK

Changyu Hu
Department of Mechanical and Aerospace Engineering,
Missouri University of Science and Technology,
Rolla, MO 65409, USA

ABSTRACT

The optical nonlocality in metal-dielectric multilayer metamaterial stack is characterized as a function of the angle of incidence for different polarizations. The measured epsilon-near-zero wavelength shift due to optical nonlocal effects agrees with the theoretical analysis developed from the transfer-matrix method and the finite-element method simulation results. In \(\omega - k \) space, the calculated band structures and iso-frequency contours reveal the mechanism of the incident angle dependent epsilon-near-zero wavelength shift for different polarizations due to the strong optical nonlocality in the multilayer stacks.